Parameterizing Carbon Export Below the Euphotic Zone

Luke Gloege*, Galen McKinley¹, Colleen Mouw², Audrey Barnett²

¹University of Wisconsin Madison ºMichigan Technological University
gloege@wisc.edu

I. Abstract
The shunt of photosynthetically derived particulate organic carbon (POC) out of the euphotic zone is an integral component of the “biological pump.” POC raining through the twilight zone (z1 = 1 km) and midnight zone (1km-4km) is remineralized back to dissolved inorganic carbon though microbial respiration. Accurately capturing POC flux in models is essential to accurately capture surface ocean pCO2 as well as understanding carbon sequestration. Here, we compare three common POC flux parameterizations in ocean provinces. Namely, exponential decay, Martin curve, and the “ballast hypothesis.” Simulations were considered representative of the ecosystem if they captured the observed range of primary production. We assessed model performance using “Target diagrams,” a summary diagram that displays how well the model captures the observed mean and the observed variability. Results indicate all the models perform well in the twilight zone also, only the “ballast hypothesis” and Martin curve capture observations in the midnight zone.

II. Methods
• MITgcm setup with 1D framework and 77 vertical levels.
• Nutrient concentrations relaxed to monthly climatology, except when the concentration exceeded climatology in the euphotic zone.
• 11 of the 54 Longhurst provinces (Reygondeau et al. 2013) were simulated (Figure 1).

III. Results / Conclusions
• All three model capture observations within the twilight zone (Figure 3).
• Martin curve and ballast model capture observations at depth (Figure 2).
• Models capture the mean in twilight zone but underestimate variability (Figure 3).
• Exponential model does not capture observations in the midnight zone (Figure 3).
• The ballast hypothesis captures observations at depth, corroborating Lima et al., 2014

Overarching Conclusion
Ballast hypothesis shows no improvement over the global or regional Martin curve.

Figure 1: POC flux observations overlain with Longhurst provinces. Red dots indicate sites of moored sediment traps and thorium-234 observations. Shown provinces (11 out of 54) were simulated using a 1D framework. Gold provinces are presented here. Gray provinces can be shown upon request. data availability: http://dx.doi.org/10.1594/PANGAEA.855600 (Mouw et al., 2015, in review)

Figure 2: Observed and modeled POC flux at each province. Annual climatology (8 day block median) of POC flux from moored sediment traps is shown in blue. Simulated POC flux using the Martin curve, an exponential model, and “ballast hypothesis” is shown in black and standard deviation is shown in gray. Cross-plot of observed and modeled POC flux is shown beside each POC flux vs. depth plot. Red dashed line indicated a one-to-one line. The reliability index (RI=10−uRMSD) is shown in red for the twilight zone (twi) and midnight zone (mid).

Figure 3: “Target diagrams” comparing model skill between Martin curve, exponential model, and “ballast hypothesis” in the twilight zone and midnight zone. B* and uRMSD* indicate the bias (B) and unsigned root mean squared difference (uRMSD) normalized by the data standard deviation. The radius of the central black circle is the normalized standard deviation of data. Symbols within the circle indicate that the model captures POC flux more accurately than using the mean of the observed data.

References

III. Results / Conclusions
• All three model capture observations within the twilight zone (Figure 3).
• Martin curve and ballast model capture observations at depth (Figure 2).
• Exponential model does not capture observations in the midnight zone (Figure 3).
• The ballast hypothesis captures observations at depth, corroborating Lima et al., 2014

Overarching Conclusion
Ballast hypothesis shows no improvement over the global or regional Martin curve.