I am a Postdoctoral Research Associate based at Yale University. My research focuses on understanding changes in the global carbon cycle using models, machine learning, and observations. Current research uses machine learning to emulate ocean alkainty enhancement (OAE) intervention simulations. I am particularly interested in how biology and physics mediate the spatial patterns of nutrients and pCO2 to understand how the climate and ecosystems change over time. This work can lead to efficient managment efforts in large lakes/oceans and reduce uncertainty in the global carbon budget.
Supervisor: Matthew Eisaman
My research focuses on emulating ocean alkalinity enhancement (OAE) interventions simulations using machine learning.
January 2024 - Present
Supervisor: Evan Prodromou
I collaborated on open source projects including a climate accounting system and an app to help cities track their emissions.
November 2022 - December 2023
Supervisor: Anastasia Romanou
My research focuses on understanding changes in the ocean carbon cycle using coupled ocean-atmosphere models and machine learning.
December 2021 - November 2022
Supervisor: Pierre Gentine
I focused on the 2020 Siberian heatwave. Positive temperature anomalies over Siberia caused early snowmelt, leading to substantial earlier vegetation greening accompanied by decreased soil moisture and browning in the summer.
March 2020 - November 2021
Supervisor: Galen McKinley
Title: Global Ocean Carbon Dioxide Flux Mapping Techniques: Evaluation, Development, and Discrepancies
2017-2020
Supervisor: Galen McKinley
2014-2017
Supervisor: Jay Austin
Title: Modeling near-inertial waves in Lake Superior
2012-2014
2007-2012
Bennington, V.S., Gloege, L., and McKinley, G.A. (2022) Variability in the global ocean carbon sink from 1959-2020. Read it on ESSOArchive
Gloege, Lucas, Kornhuber, K., Skulovich, O., Pal, I., Zhou, S., Ciais, P., and Gentine, P. Land-atmosphere cascade fueled the 2020 siberian heatwave. AGU advances (under review)
Gloege, Lucas, Yan, M., Zheng, T., and McKinley, G. A. (2022). Improved quantification of ocean carbon uptake by using machine learning to merge global models and pco2 data. Journal of Advances in Modeling Earth Systems 14:e2021MS002620 https://doi.org/10.1029/2021MS002620
Gloege, Lucas, McKinley, G. A., Landschu ̈tzer, P., Lovenduski, N. S., Rodgers, K., Fay, A. R., Fro ̈licher, T., Fyfe, J., Illyina, T., Jones, S., Ro ̈denbeck, C., Schlunegger, S., and Takano, Y. (2021). Quantifying errors in observationally-based estimates of ocean carbon sink variability Global Biogeochemical Cycles, 35:e2020GB006788 https://doi.org/10.1029/2020GB006788
Stamell, J., Rustagi, R. R., Gloege, Lucas, and McKinley, G. A. (2020). Strengths and weaknesses of three machine learning methods for pCO2 interpolation. Geoscientific Model Development Discussions, pages 1–25 https://doi.org/10.5194/gmd-2020-311
Abell, J. T., Rahimi, S. R., Pullen, A., Lebo, Z. J., Zhang, D., Kapp, P., Gloege, Lucas, Ridge, S., Nie, J., and Winckler, G. (2020b). Model evidence for the hami basin and possibly other modern stony deserts in asia as dust sources during the plio-pleistocene. Geophysical Research Letters, 47:e2020GL090064 https://doi.org/10.1029/2020GL090064
McKinley, G. A., Fay, A. R., Gloege, Lucas, and Lovenduski, N. S. (2020). External forcing explains recent decadal variability of the ocean carbon sink. AGU Advances, 1(2):e2019AV000149 https://doi.org/10.1029/2019AV000149
Gloege, Lucas, McKinley, G. A., Mooney, R., Allan, J., Diebel, M., and McIntyre, P. (2020). Lake hydrodynamics intensify the potential impact of watershed pollutants on coastal ecosystem services. Environmental Research Letters, 15(6):064028 https://doi.org/10.1088/1748-9326/ab7f62
Abell, J. T., Pullen, A., Lebo, Z. J., Kapp, P., Gloege, Lucas, Metcalf, A. R., Nie, J., and Winckler, G. (2020a). A wind-albedo-wind feedback driven by landscape evolution. Nature Communications, 11(1):1–9 https://doi.org/10.1038/s41467-019-13661-w
Gloege, Lucas, McKinley, G. A., Mouw, C. B., and Ciochetto, A. B. (2017). Global evaluation of particulate organic carbon flux parameterizations and implications for atmospheric pCO2. Global Biogeochemical Cycles, 31(7):1192–1215 https://doi.org/10.1002/2016GB005535
Mouw, C. B., Barnett, A., McKinley, G. A., Gloege, Lucas, and Pilcher, D. (2016b). Phytoplankton size impact on export flux in the global ocean. Global Biogeochemical Cycles, 30(10):1542–1562 https://doi.org/10.1002/2015GB005355
Mouw, C. B., Barnett, A., McKinley, G. A., Gloege, Lucas, and Pilcher, D. (2016a). Global ocean particulate organic carbon flux merged with satellite parameters. Earth System Science Data, 8(2):531–541 https://doi.org/10.5194/essd-8-531-2016